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The ‘simplest’ entanglements of the graph of edges of the cube are enumerated,

forming two-cell {6, 3} (hexagonal mesh) complexes on the genus-one two-

dimensional torus. Five chiral pairs of knotted graphs are found. The examples

contain non-trivial knotted and/or linked subgraphs [(2, 2), (2, 4) torus links and

(3, 2), (4, 3) torus knots].

1. Introduction

The enumeration of the regular polyhedra dates back at least

to Plato’s Academy, where he introduces the Platonic poly-

hedra in his Timaeus (Plato, 1965). In the intervening millenia,

our notion of polyhedra has broadened, to encompass

Kepler’s stellations of the five Platonic polyhedra and

Coxeter’s (and Petrie’s) infinite polyhedra (Kepler, 1619;

Coxeter, 1999; McMullen & Schulte, 1997). These examples

reveal the shortcomings of too restrictive a definition of

polyhedra; indeed, recent texts emphasize the difficulties of a

sufficiently inclusive definition for polyhedra (Cromwell,

2001). Many examples deserve to be catalogued as significant

relatives of Plato’s regular examples; the question of just how

many is perhaps dependent on our scientific motivation. Here

we propose a simple hierarchy based on the topology of the

(simplest) underlying manifold capable of carrying the

(possibly knotted) network.

Knotted networks are of substantial interest to modern

supra-molecular chemistry that has explored chemical realiz-

ations of simple graphs as molecules in some detail (Sauvage

& Dietrich-Buchecker, 1999; Flapan, 2000). Chemists are now

reporting metallo-organic crystals, whose supra-molecular

structures exhibit complex catenation and threading, and

contain knotted and linked subgraphs (Carlucci et al., 2003a,b;

Koch & Sowa, 2004; Fischer, 2004; Delgado-Friedrichs &

O’Keeffe, 2005; Delgado-Friedrichs et al., 2005). For example,

a molecular crystal whose network topology is identical to that

of the diamond network, but whose ambient isotopy is distinct,

has been grown. Giant polymeric DNA networks display

analogous complexity in the interweaving of individual DNA

strands (Seeman & Lukeman, 2005). It seems likely that

knotted structures will emerge in greater abundance as the

polymeric nature of the crystalline ligands (that form the

network edges) lengthens, due to the increased chance of

intertwining of the extended ligands during self-assembly (just

as the likelihood of a knotted polymeric chain increases

dramatically with the degree of polymerization). Analysis of

these knotted infinite networks is in its infancy. A reasonable

starting point is to consider the simpler situation of a finite

graph and knottings thereof.

1.1. Toroidal polyhedra

The exploration of toroidal polyhedra, containing holes,

appears to be of recent interest. Some systematic studies of

analogous examples to Archimedean polyhedra have been

discussed in a now hard-to-find monograph (Stewart, 1970).

Mathematicians have explored the concept of knotted graphs

to a limited degree to date, though powerful (yet incomplete)

invariants – derived from those of standard knots – are

available to characterize their knotting (Conway & Gordon,

1983; Kauffman, 1989; Simon, 1987; Adams, 2002). So far,

knottings of only the simplest graph – the theta graph with two

degree three vertices and three edges – have been investigated

in any detail (Wolcott, 1987; Litherland, 1989; Moriuchi, 2004).

That work focused on the enumeration of knottings of the

theta graph up to a certain complexity in a simple invariant of

knots, the crossing number (the minimum number of edge

crossings in a planar drawing of the graph). It seems prefer-

able to us, however, to classify knotted embeddings of graphs

in terms of the topological complexity of the lowest genus

manifold capable of carrying the graph embedding.

It is helpful to clarify the terminology we will need. We

consider a graph to be a connected network of (V) vertices

and (E) edges. The graph topology is captured by (for

example) a connectivity table that describes the vertices at

either end of all edges. All graphs with the same topology are

isomorphic. However, isomorphic copies may differ in their

edge crossings, so that phantom moves, changing the crossing

diagram, must be imposed to reveal the isomorphism between

topologically equivalent graphs. The arrangement of under/

over edge crossings is a feature of the embedding of the graph

in space. Two isomorphic graphs that can be embedded in

space to share the same arrangement of edge-crossings are

isotopic: an ambient isotopy of the graph embedding is



sufficient to bring them into geometric coincidence. Thus,

isomorphs of a given graph may have distinct knottings; we

define isotopes to include all graph embeddings with the same

knotting (i.e. geometric embeddings within an ambient

isotopy). For convenience, we also allow chiral enantiomers of

the embedding to lie within the same isotopic class and refer to

right- and left-handed versions (referred to as þ and �

isotopes).

Platonic polyhedra tile the genus-zero sphere, whereas the

stellated polyhedra tile multiple coverings of the sphere and

the infinite polyhedra tile a handle-body with an unbounded

genus (such as a triply periodic minimal surface). Modern

derivations of the existence of Platonic polyhedra invoke

Euler’s relation; a topological equation that accords with the

perspective we adopt here. The equation can be written

V � Eþ F ¼ 2ð1� gÞ; ð1Þ

where V, E, F denote the number of vertices, edges and faces

in a decoration of the surface of genus g, where all faces

(minus their bounding edges) are open discs (known as a two-

cell embedding of an oriented manifold without boundary).

Regular polyhedra emerge as solutions provided g ¼ 0. Note

that this relation goes beyond a purely graph-theoretical

perspective, as it includes the faces of the embedding. We view

the two-cell embedding as a (potentially) knotted graph in

three-dimensional Euclidean space (E3), as follows. The

particular isotope of the graph is that induced by the

embedding in E3 of the reticulated manifold. This route to

construction of graph embeddings allows us to enumerate the

isotopy of the graph of polyhedral edges – its knotting – via

reticulation of the underlying two-manifold by the graph.

For example, the reticulation of a genus-zero sphere by the

cube graph yields the well known (un)knotting of the cube

graph, shown in Fig. 1. This isotope is characterized by six

quadrilateral tiles covering the sphere, with three surrounding

each vertex, giving the conventional Schläfli symbol for the

cube, ð4; 3Þ.1 Note that all cycles of the unknotted cube (4-, 6-

and 8-cycles) are unknotted and pairs of (4-)cycles with

disjoint edges form trivial unknotted two-component links.

We are concerned here with extension of that technique to

the next-simplest oriented two-manifold: the (genus-one)

torus. We call these examples toroidal cubes.

The identification of knotted embeddings that are topo-

logical cubes is readily done by checking the coordination

sequence (Brunner & Laves, 1971) [or shell map (Aste et al.,

1996)] of the putative graph. The coordination sequence,

½i; j; k; . . .�, for a particular vertex origin describes the number

of vertices displaced from the origin by shortest walk of length

1; 2; . . .. Among all five degree-three graphs with eight

vertices (Brinkmann, 1996), only the graph of the cube edges

has sequence ½3; 3; 1� irrespective of the choice of vertex

origin. An alternative identification procedure for cube-graph

isomorphs containing an unknotted cycle passing through all

vertices (a Hamiltonian circuit) can be done by inspection,
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Figure 1
Two views of the unknotted (genus-zero) cube. The right-hand diagram is
bounded by an octagonal Hamiltonian circuit of the cube.

Table 1
Knottedness of the 13 unit cells of the (6, 3) tiling that wrap onto the torus
to form cube isomorphs.

In addition to one example of the conventional unknotted cube, five additional
knotted isotopes emerge, labelled A-, B-, C-, D-, E-types. These emerge from
various choices of lattice vectors of the (6, 3) Euclidean tiling, shown in Fig. 3.

Cube isotope Lattice vectors Images

Unknotted cube f4; 0g; f0; 2g Fig. 4
Isotope Aþ f4; 0g; f2; 2g Fig. 8
Isotope Aþ f4; 2g; f0; 2g Fig. 8
Isotope Bþ f8; 0g; f3; 1g Fig. 12
Isotope B� f4; 4g; f3; 1g Fig. 12
Isotope Cþ f4; 2g; f4; 0g Fig. 15
Isotope C� f5; 1g; f2; 2g Fig. 15
Isotope Dþ f6; 2g; f4; 0g Fig. 18
Isotope D� f6; 2g; f2; 2g Fig. 18
Isotope Dþ f0; 4g; f2; 2g Fig. 18
Isotope Eþ f8; 0g; f5; 1g Fig. 21
Isotope E� f4; 4g; f4; 2g Fig. 21
Isotope Eþ f4; 4g; f1; 3g Fig. 21

Figure 2
A knotted cube, with four tangled strands linking pairs of vertices in the
bounding Hamiltonian (8-)cycle of the cube. Any internal tangle gives an
isomorphic graph to the cube graph (the graph of cube edges).

1 We adopt the convention that fi; jg and ði; jÞ refer to a network whose vertices
form smallest cycles of length i with j edges coincident at each vertex. If i; j are
enclosed between braces f; g, the network is geometrically embedded on an
embedded two-dimensional surface in a Platonic form [i.e. flag transitive in the
sense of Delaney–Dress tiling theory, with orbifold symmetry ?2ij (Conway &
Huson, 2002)]. Otherwise, we denote the tiling ði; jÞ.



checking that edges link third-neighbouring vertices along the

Hamiltonian circuit, as in Fig. 2. Evidently, knotted varieties of

the cube contain tangles of arbitrary complexity between the

four internal edges within the Hamiltonian boundary

(Fig. 2).

1.2. Regular cubes

Enumeration of regular reticulations of the torus has been

explored to some extent. An exhaustive list of ‘regular’ two-

cell complexes (tilings that fulfil the conditions required for

Euler’s relation to hold) has been published (Conder &

Dobsanyi, 2001; Lijnen & Ceulemans, 2005). That definition is,

however, very restrictive, as it demands that the topological

symmetries of the reticulation (the group of automorphisms of

the edges on the manifold) contain the group of automorph-

isms of the manifold itself as a normal subgroup. We relax that

somewhat and require only that the two-cell embedding

contains topologically identical vertices, edges and faces. In

other words, we require that all faces of the two-cell embed-

ding are of the same order, in addition to all vertices having

the same degree. The question of symmetries of resulting

embeddings in E3 is deferred to a later stage.

We note that this generous constraint on regularity is

nevertheless sufficiently narrow to admit only the five Platonic

polyhedra as regular genus-zero polyhedra.

We use this technique to explore possible knotted variants

of the best known Platonic polyhedron: the cube.

2. Enumeration of toroidal cubes

The universal cover of any tiling of the torus is a two-periodic

tiling of E2. Clearly, all isotopes of the cube share the standard

features of the Platonic cube: eight vertices, all of degree

three. We form reticulations of the torus that are topological

cubes according to the following route. Since our definition of

regularity demands equal polygons for all tiles and the degree
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Figure 3
The ð6; 3Þ tiling, drawn as the rectangular ‘brick’ tiling. Among all
possible lattice vectors, we choose those that connect vertices to form
graph cycles of length 8 (blue vectors), 6 (green) and 4 (red). The lattice
vectors are labelled with their Cartesian vectors, where each brick is of (x)
width 2 units and (y) height 1 unit.

Figure 4
Embedding of the standard (unknotted) cube isotope on the torus. The
minimal embedding of this isotope is on the sphere.

Figure 5
Example of a two-periodic planar pattern that defines a torus reticulation
by the ð6; 3Þ tiling, containing eight vertices within each unit cell, labelled
by circled integers 1; 2; . . . ; 8. Three adjacent rhombohedral unit cells are
drawn bounded by dotted parallelograms. A pair of lattice vectors
defining the unit-cell edges are labelled by their Cartesian position
vectors ð0; 4Þ and ð2; 2Þ. The parallel meanders (orange lines) represent a
single Hamiltonian 8-cycle of the compact genus-one graph
(127634581 . . . ). The dashed lines indicate the average pitch of the
meanders; their intersections with unit-cell edges determine the
homotopy of this 8-cycle. In this example, dashed lines intersect the
ð0; 4Þ edges thrice and the ð2; 2Þ edges twice. This cycle is therefore a
knotted loop with homotopy (3, 2) on the torus; a trefoil.



of the tiling is equal to three, all faces must be hexagons [i.e.

the ð6; 3Þ tiling of the Euclidean plane]. First, embed the ð6; 3Þ

tiling in E2. For our purposes, it is sufficient and convenient to

use a brick tiling, with bricks two units wide and one unit high.

In that configuration, vertices of the ð6; 3Þ tiling have positions

ðx; yÞ ¼ ð2pþmod 2½q�; qÞ, where p 2 f0; 1; 2; . . . ; ig and

q 2 f0; 1; 2; . . . ; jg. The integers a and b define gluing vectors

of the torus: the points ðx; yÞ, ðxþ a; yÞ, ðx; yþ bÞ and

ðxþ a; yþ bÞ etc. coincide on the torus. The ‘gluing vector’

ða; bÞ then defines the fundamental homotopic loops (or

collars) of the torus. Provided gluing vectors are lattice vectors

of the ð6; 3Þ tiling, a multiple cover of the torus with identically

positioned tiles on each cover results.

All cycles of the cube graph traverse four, six or eight

vertices only. Though longer closed walks are possible on the

cube graph (by appending additional loops), we confine this

analysis to cycles of length four, six and eight only, to constrain

the enumeration to manageable proportions. This constraint

restricts allowed lattice vectors considerably. The number of

admissible lattice vectors is equal to the sum of entries in the

coordination sequence for the ð6; 3Þ network at positions 4, 6

and 8; viz 12þ 18þ 24. We reduce those vectors to those with

non-negative entries, giving four, five and seven distinct lattice

vectors for cycles of length four, six and eight, respectively,

shown in Fig. 3. Any pair of these lattice vectors can be used to

define a torus whose cycles are of the requisite length. Among

those pairs, we select only those containing eight vertices

within a single unit cell. That constraint leaves us with 20 pairs

of lattice vectors, leading to 20 geometrically distinct tori.

Among those 20 solutions, seven are not cube isomorphs

(since their coordination sequences do not match that of the
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Figure 6
The six simplest embeddings of the graph of edges of the cube. The
unknotted cube tiles the (genus zero) sphere; knotted cubes A� E tile
the genus-one torus. The latter graph embeddings are all chiral, we show
here only one of the enantiomers. The left column shows images of all
isotopes bounded by an unknotted Hamiltonian circuit; the right column
displays the knotted graphs with minimal crossing number.

Figure 8
Isotope A with the Hopf link highlighted (red and blue cycles).

Figure 7
Vessel #2, a fibreglass and acrylic sculpture realized by Robert Owen
(2003). Image courtesy of Sherman Galleries, Sydney.



cube). Of the remaining 13 topological cubes, one turns out to

be an embedding of the standard (unknotted) cube on the

torus (Fig. 4). The remaining 12 are novel genus-one isotopes

of the cube. How many of these are distinct isotopes? We use

the isotopic invariants for knotted graphs described by

Kauffman, namely, the standard knot and link invariants

formed by all possible cycles of the graph (Kauffman, 1989).

These embed on the torus as simple (unbranched) knots and

links with characteristic homotopic signatures, described

below. This technique is sufficient to distinguish distinct

achiral isotopes (though it typically fails to distinguish chiral

enantiomers), provided they are characterized by distinct

embedded knots and/or links as subgraphs. Where embed-

dings share an identical suite of knots or links, but display
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190 Hyde and Schröder-Turk � Tangled cubes Acta Cryst. (2007). A63, 186–197

Figure 9
The A-type cube; the simplest cube tangle. The top left image shows the fragment of the (6, 3) tiling of the Euclidean plane and the unit cell with lattice
vectors (4, 0) and (2, 2) (see Fig. 3), containing eight degree-three vertices (labelled 1–8). The embedding that emerges by identifying translation-
equivalent points, forming a torus, and then embedding the edges in three-dimensional Euclidean space is shown to the right. Second row, left: Vertex
labelling in the toroidal embedding corresponding to those in the (6, 3) tiling. Right: Alternative view of the type-A isotope as the classic ‘impossible’
cube, which is impossible only if it is assumed to reticulate a sphere! Third, fourth rows: Equivalent images resulting from the the (6, 3) tiling of the
Euclidean plane and the unit cell with lattice vectors (4, 2) and (0, 2). This wraps on the torus to form slightly different unknotted cycles to the previous
case (cf. Table 2), however, it gives an equivalent isotope.



unknotted cycles (trivial knots) with distinct homotopic

signatures, we must look further. Thus, we first bundle the 12

solutions into distinct isotopy classes and then investigate the

possibility of chiral versions within each class.

All examples are – by construction – torus embeddings, so

that the possible knots and links are torus knots, readily

characterized by their homotopy on the torus. Those data

describe the homotopic winding of each cycle around the torus

with respect to the basis vectors of the fundamental group of

the torus. Each cycle unfolds to a meandering path in the

universal cover of the torus reticulation. The average pitch of

the meander can be determined visually from its crossings with

the unit-cell boundaries that make up a single torus. A typical

example is shown in Fig. 5. This example – the Hamiltonian

cycle 127634581 on isotope D – forms a cycle of homotopy

ð3; 2Þ with respect to the torus defined by an ordered pair of

lattice vectors ð0; 4Þ and ð2; 2Þ, corresponding to the average

pitch of the meander 127634581 . . . in the universal cover. The

ð3; 2Þ torus knot is the simplest non-trivial knot: the trefoil

(Adams, 2002). The corresponding knot on the cube isotope D

is illustrated in Fig. 19. Cycles with homotopy ðc; dÞ form non-

trivial knots provided the fraction c=d is not an integer.

Tangled links can also be identified from their homotopy

type: n-component links on the torus necessarily comprise
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Figure 10
Deformation (an ambient isotopy) of the embedding of the A-type
isotope shown in Fig. 8 to form the chiral four-rung twisted ladder.

Figure 11
Left- and right-handed Aþ and A� isotopes.

Table 2
Distinct isotopes of the cube graph that embed on the genus one torus,
ranked from least to most tangled.

The homotopies of the cycles on the torus are listed in the same order as the
torus gluing vectors (lattice vectors). All cycles of length eight (Hamiltonian
circuits) and links containing a pair of 4-cycles are listed. Cycles of length six
are listed only for the knotted examples: four 6-cycles in the E-type isotope.
Blank entries in the knot type column signify that the relevant knots/links are
trivial (i.e. unknotted).

Isotope
name

Lattice
vectors Cycle(s) Homotopy Knot type

A ð4; 0Þ; ð2; 2Þ 12345678 ð2; 1Þ
12367854 ð1; 1Þ
12763458 ð1; 2Þ
12785634 ð2; 1Þ
14327658 ð1; 1Þ
14563278 ð1; 2Þ
(1278)(3654) ð1; 1Þð1; 1Þ Hopf (22

1) link
(1854)(2367) ð0; 1Þð0; 1Þ
(1234)(5678) ð1; 0Þð1; 0Þ

A ð4; 2Þ; ð0; 2Þ 12673485 ð3; 1Þ
15623784 ð1; 1Þ
12658734 ð1; 0Þ
15678432 ð1; 0Þ
14873265 ð1; 1Þ
12376584 ð1; 0Þ
(1234)(5678) ð1; 1Þð1; 1Þ Hopf (22

1) link
(1485)(2376) ð0; 1Þð0; 1Þ
(1562)(3487) ð1; 0Þð1; 0Þ

B ð4; 4Þ; ð3; 1Þ 12345678 ð0; 1Þ
12367854 ð1; 0Þ
12763458 ð1; 0Þ
12785634 ð4; 1Þ
14327658 ð1; 0Þ
14563278 ð1; 0Þ
(1278)(3456) ð1; 0Þð1; 0Þ
(1432)(8567) ð1; 0Þ; ð1; 0Þ
(2367)(1854) ð2; 1Þð2; 1Þ 42

1 link

C ð5; 1Þ; ð2; 2Þ 12345678 ð1; 2Þ
12387456 ð1; 1Þ
12543876 ð1; 1Þ
12567438 ð1; 1Þ
16523478 ð1; 1Þ
16745238 ð3; 2Þ Trefoil (31) knot
(1678)(2543) ð1; 1Þð1; 1Þ Hopf (22

1) link
(1256)(7834) ð1; 0Þð1; 0Þ
(3812)(4765) ð1; 1Þð1; 1Þ Hopf (22

1) link

D ð0; 4Þ; ð2; 2Þ 12345678 ð0; 1Þ
12367854 ð3; 1Þ
12763458 ð3; 2Þ Trefoil (31) knot
12785634 ð0; 1Þ
14327658 ð3; 1Þ
14563278 ð3; 2Þ Trefoil (31) knot
(1432)(8567) ð1; 0Þð1; 0Þ
(2781)(3654) ð1; 1Þð1; 1Þ Hopf (22

1) link
(3276)(1854) ð2; 1Þð2; 1Þ 42

1 link

E ð4; 4Þ; ð4; 2Þ 17654328 ð0; 1Þ
17632845 ð1; 1Þ
17236548 ð1; 1Þ
17284365 ð4; 3Þ 819 knot
15672348 ð1; 1Þ
15436728 ð1; 1Þ
172845 (3,2) Trefoil (31) knot
284367 (3,2) Trefoil (31) knot
172365 (3,2) Trefoil (31) knot
184365 (3,2) Trefoil (31) knot
(3276)(1548) ð2; 1Þð2; 1Þ 42

1 link
(7281)(6345) ð1; 1Þð1; 1Þ Hopf (22

1) link
(1567)(4823) ð1; 1Þð1; 1Þ Hopf (22

1) link



homotopically equivalent cycles; ðne; nf Þ, where e and f are

non-zero (Adams, 2002).

Using this approach, we have determined the knot class for

all cycles and links in tangled cubes – constrained to arise from

ð6; 3Þ tilings on the torus, with maximum cycles of length eight

– that reticulate the torus. The complete set of cycles on cube

isomorphs comprises six Hamiltonian cycles (of length eight),

16 6-cycles (including four Petrie polygons of the cube) and six

4-cycles. Multiple cycles are links, provided the edges within

distinct cycles are disjoint. Admissible links for cube

isomorphs are the three pairs of 4-cycles with disjoint edges

(corresponding to the edges of opposite faces in the unknotted

cube). We have determined the knot class from the meander

homotopy for all distinct 8-cycles, 6-cycles and links formed by

pairs of 4-cycles.

The suite of non-trivial knots and links for the 12 novel cube

isotopes have been exhaustively determined (Table 1). Their

cycle homotopies fall into six distinct classes. Two of those

share the same non-trivial knot and have slightly different

unknotted Hamiltonian circuits, forming equivalent isotopes

in three-dimensional Euclidean space, E3. We therefore find

five distinct genus-one isotopes (plus chiral enantiomers),

according to Kauffman’s invariant described above. These are

compared with the conventional (unknotted) cube in Fig. 6.

Two knots are present in these tangled cubes: the trefoil

knot [homotopy class ð2; 3Þ, Alexander-Briggs symbol 31] and

research papers

192 Hyde and Schröder-Turk � Tangled cubes Acta Cryst. (2007). A63, 186–197

Figure 13
The B-type cube, the wreath cube, with the cycles making up the 42

1 link
highlighted.

Figure 14
Left- and right-handed wreath cubes (Bþ, B� isotopes).

Figure 12
Isotope B, the ’wreath cube’.

Figure 15
The C-type cube.



the 819 knot [homotopy class ð3; 4Þ]. In addition, two distinct

links are found: the Hopf link [22
1, homotopy class ð2; 2Þ] and

the 42
1 link [homotopy class ð2; 4Þ on the torus]. (All 4-cycles

are unknotted.) The cycles are labelled by their vertices

following the vertex numbering displayed in the figures in the

main text. The data are collected in Table 2.

3. Three-dimensional embeddings of tangled cubes

The problem of finding a canonical embedding for these

toroidal polyhedral graphs does not have a clear solution. The

issue is in stark contrast to the analogous problem for

isomorphs of crystalline graphs in E3: in most cases, bary-

centric embeddings provide a simple solution, choosing a

metric embedding of the ‘equilibrium placement’ (Delgado-

Friedrichs & O’Keeffe, 2003) in a simple cubic unit cell. We

can adapt the equilibrium placement idea to our case, to find

an embedding of the ð6; 3Þ graphs in E2; namely the geome-

trically regular f6; 3g (Platonic) net. That placement gives the

barycentric coordinates of the net on the flat torus (whose

universal cover is E2). The flat torus is not embeddable in E3

without metric distortion; nevertheless, we can proceed

further with that idealization to give an embedding. For

convenience only, we have chosen a standard embedding of

the torus whose (orthogonal) generators of the fundamental

group [(1, 0) and (0, 1)] embed in E3 such that one period is

twice the length of the other. We have adopted that conven-

tion here to allow for comparable embeddings of all cube

isotopes. The resulting images, both on the torus and removed

from the torus without further spatial deformation, are

displayed with edges consistently coloured in one of three

colours (gold, red and blue) among the figures mentioned

below.

3.1. Isotope A

Among all the cube graphs that contain knots or links, one

pair of examples, defined by the lattice vectors ð4; 0Þ; ð2; 2Þ and

ð4; 2Þ; ð0; 2Þ, contains only a single Hopf link. [The latter case

contains an unknotted cycle of length eight slightly different to

those listed in Table 2, with homotopy ð3; 1Þ. However, as

explained below, this does not result in a distinct knotting in

E
3.] This isotope, labelled for convenience A-type, is the

simplest knotted isotope. It can be drawn with two crossings,

producing an ‘impossible cube’ to the untrained eye. It is a

favourite motif for artists, psychologists and mystics.2 A

beautiful rendering of this isotope is a recent sculpture by the

Australian artist, Robert Owen (Owen, 2003) (Fig. 7). This

example is the simplest tangled isotope of the cube: a single

phantom move, exchanging crossings, is sufficient to recover

the conventional (genus-zero, untangled) cube. All cycles of

this isotope are unknotted, while just a single pair of disjoint

4-cycles are linked, forming the Hopf 21
2 link [a (2, 2) link on

the torus, with a pair of interwoven cycles of homotopy (1, 1)

each]. This link is highlighted in Fig. 8. A-type isotopes include

two of the six distinct embeddings distinguished by their cycle

homotopies on the torus (Table 2). The pair share the same

link but have distinct – unknotted – Hamiltonian cycle

homotopies. These differences are not manifested as distinct

isotopes in E3. Toroidal reticulations,

unrolled into E3, of the pair as well as

alternative Schlegel diagrams, to be

read as embeddings in E3, are shown in

Fig. 9. The possibility of topological

chirality (Simon, 1987) of isotope A –

with non-superimposable mirror

images regardless of the geometry of

the isotope – requires checking. (Note

that the unknotted cube is topologi-

cally achiral). Simple deformation of

the isotope geometry allows us to draw

this isotope as a four-rung twisted

cylinder (see Fig. 10), proven by Simon

to be topologically chiral (Simon,

1987). Therefore, two distinct enan-

tiomers of the A-type isotope occur, Aþ and A�, drawn in

Fig. 11.

3.2. Isotope B: the wreath cube

A second distinct isotope – the B-type isotope – of the cube

is an elegant generalization of an alternating braid, with a

crossing number of four. It embeds on the torus to give a
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Figure 16
Left to right: The trefoil knot contained in a Hamiltonian circuit (16745238) of the C-type isotope and
a pair of Hopf links (cf. Table 2).

Figure 17
Cþ and C� isotopes of the cube.

2 The analysis of ‘impossible figures’ such as knots and braids has been noted
previously (Cowan, 1982; Cerf, 2002), though the examples and approach
canvassed elsewhere are related to thickened polyhedral edge structures, such
as the Penrose tribar.



wreath-like pattern: we call this the wreath cube. Its universal

cover and a simple Schlegel representation are shown in Fig.

12. Its Hamiltonian cycles and all 6-cycles are unknotted. One

pair of 4-cycle links is knotted, forming the 42
1 link, a pair of

torus cycles, each of homotopy ð2; 1Þ (Fig. 13). It follows from

the non-palindromic nature of the coefficients of the Jones

polynomial of the 42
1 link that this link is topologically chiral

(Adams, 2002). Therefore, isotope B, like the previous

example, is chiral (see Fig. 14).

3.3. Isotope C

A third distinct cube isotope (Fig. 15) is the simplest

example to contain knotted Hamiltonian circuits. It includes a

trefoil (31) knot containing all eight vertices of the cube (Table

2, Fig. 16). Its minimal crossing number is four. All 6-cycles are

unknotted. However, all three links formed by pairs of disjoint

4-cycles are non-trivial; forming two Hopf links and a 42
1 link.

The presence of topologically chiral links (42
1) and the chiral

trefoil knot establishes the existence of a pair of distinct chiral

enantiomers, drawn in Fig. 17.

3.4. Isotope D

An additional distinct isotope of the cube graph, with

crossing number four, is shown in Fig. 18. This isotope –

D-type – contains a pair of knotted Hamiltonian circuits; both

trefoils of the same handedness (Fig. 19); all 6-cycles are

unknotted. It also includes a Hopf and a 42
1 link (cf. Table 2).

The presence of these topologically chiral knots and links

establishes the presence of an enantiomeric pair of D-type

isotopes, drawn in Fig. 20.

3.5. Isotope E

This isotope, with (minimal) crossing number eight is shown

in Fig. 21. It is the most tangled example among those

enumerated here, with five knots and three links (Fig. 22 ). Its

4-cycles contain the same suite of links as those found in

isotope C. Like C, a single Hamiltonian circuit is knotted; in

this case, to form the chiral 819 knot. This is the sole example to

exhibit knotted 6-cycles: four of the sixteen 6-cycles form

trefoils. The presence of these chiral knots proves that E-type
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Figure 19
Left: the pair of like-handed trefoil knots found in the type-D isotope. Right: the Hopf and 42

1 links.

Figure 18
The D-type cube.



isotopes of the cube also exist in two enantiomeric forms

regardless of the embedding, shown in Fig. 23.
4. Extensions: infinite networks and other polyhedral
knottings

Our primary goal here has been to explore the concept of

generalized polyhedral edge graphs that result from reticula-

tions of the genus-one torus. The implication of this work is

that we can enumerate knotted polyhedral isotopes according

to the topological complexity of the simplest manifold that

carries the knotted graph. The technique is simply modified to

detect toroidal isotopes of other Platonic polyhedra, though

the combinatorics rapidly give large numbers of solutions. The

approach furnishes relatively simple knottings of the cube, as

anticipated by the topological constraints. Relaxing the

constraint on the largest cycle length gives an infinite number

of solutions whose edges wind around the torus in tighter

loops. These cases will be analysed in a forthcoming paper
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Figure 22
Top row: The chiral 819 knot and three distinct trefoils highlighted within the E-type isotope. Bottom row: A fourth trefoil, a 42

1 link and a pair of Hopf
links. Note that all trefoils are like-handed.

Figure 21
The E-type cube.

Figure 20
Dþ and D� isotopes of the cube.



(Castle et al., 2007). The technique can be extended to higher-

genus tori. Some steps in that direction have been done

already, en route to enumeration of 3-periodic nets via reti-

culations of 3-periodic minimal surfaces (TPMS), in the

EPINET project (Ramsden et al., 2005). Just as the glued two-

dimensional Euclidean unit cells are genus-one tori, the glued

three-dimensional cells of the TPMS used to date are all

genus-three tori. All 3-periodic crystal nets generated via this

method can therefore be reduced modulo their three distinct

lattice vectors to form finite networks that reticulate the

genus-three two-dimensional torus. Many thousand examples

are therefore already implicitly derived (Hyde et al., 2006). We

plan to process those examples, finding distinct isotopes, in the

near future. Finally, we note that the examples deduced here

offer intriguing units for construction of three-periodic

networks in E
3. We reiterate that spatial realizations of

toroidal cube isotopes in E3 are far from unique – an infinity of

metric realizations of any isotope are possible. Indeed, all the

research papers
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Figure 25
Body-centred tetragonal array of B-type cubes (with the c axis almost
normal to the plane of the figure). Eight of the cubes edges are kinked
(drawn with blue edges). The resulting structure consists of degree-six
(red) vertices in a simple cubic arrangement.

Figure 23
Eþ and E� isotopes of the cube.

Figure 26
Embeddings of the knotted cubes with vertices located at the vertices of
the standard (unknotted) Platonic cube and edges spanning vertex pairs
in an identical form to those of the unknotted cube (in contrast to Fig. 24,
where edges span vertices that are shuffled relative to the standard cube).

Figure 24
Embeddings of the knotted cubes with vertices located at the vertices of
the standard (unknotted) Platonic cube.



examples introduced above can be realized with straight

edges, free of intersections, in E3. However, those embeddings

require variations of edge lengths and vertex angles – unlike

the usual embedding of the (unknotted) cube edges – giving

asymmetric patterns. We can restore a measure of symmetry

by allowing the edges to kink, to avoid intersections. Parti-

cularly appealing embeddings are afforded by locating the

vertices so that they coincide with those of an unknotted

Platonic cube. The resulting patterns all have non-trivial point

groups, though their edges vary in length within a single

isotope. Some of these patterns are shown in Fig. 24.

Recall that the unknotted simple cubic ‘jungle-gym’

network, pcu (O’Keeffe, 2003), results from vertex sharing of

unknotted cubes arranged so that their centres lie on the sites

of a body-centred lattice. We can substitute any of those cubes

for any of the knotted examples shown in Fig. 24, to give

knotted networks. A simple example, based on a body-centred

(tetragonal) array of (B-type) wreath cubes with kinked edges

is shown in Fig. 25. Numerous other examples can be envi-

saged, also based on body-centred arrangements. The most

symmetric of those are realized by kinking or smoothly

curving the edges, giving complex three-dimensional weavings,

whose components are commonly double-helical fragments.

Evidently, an infinity of tangled cubic nets are realizable via

this operation. Generic examples are not isomorphic to the

unknotted pcu net. However, if the tangled cubes are further

tangled so that their edges span vertices in a manner identical

to those of the unknotted cube, we are free to substitute these

embeddings to give knotted varieties of the pcu framework.

Cube embeddings that satisfy that condition are shown in

Fig. 26.

Given the natural curvature of edges in relaxed versions of

these tangled arrays, we do not expect to find them in atomic

frameworks. However, the complex meandering bonds in

metal-organic frameworks and polymeric crystals containing

helical fragments may induce the formation of these mathe-

matically rich structures.
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edges the Australian Research Council for financial support

through a Federation Fellowship.
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